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SUMMARY

It was thought that Temporary Threshold Shift of hearing due to exposure to

noise might be more easily understood if the shifts were considered in terms of

the rms pressure rather than in dB. Therefore, the forms to be expected if the

rate of shift of the pressure threshold were proportional to the difference

between itself and the ultimate threshold were calculated, and compared with a

limited selection of published data. Good agreement with data for the growth of

TTS in individuals was found, and moderately good agreement with recovery. Agree-

ment with data on intermittent exposures was poor, but this may be due in part

to the fact that only averaged data have been found, and averaging the widely

disparate figures obtained for individuals may mask the true effects. It is also

shown that the maximum ultimate TTS due to exposure to noise may be simply related

to the mean square pressure of that noise.

Further consideration of the mass of published work in needed, but this

study suggests that at least some facets of TTS can be simply described in terms

of exponential pressure shifts.
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I INTRODUCTION

There must by now be hundreds of published papers dealing with the pheno-

menon of temporary threshold shift (or TTS) due to exposure to noise. I cannot

claim to have studied more than a small fraction of the literature, but from

this an impression emerges that our knowledge of TTS consists of a collection of

isolated pieces of information from which it is impossible to form coherent

generalizations except in the broadest terms. I quote the salient points from a

sumary given by WardI in 1968, but which still seems to contain the accepted

facts.

"l. The growth of TTS in dB is nearly linear in the logarithm of

time... . Moderate TTS also recovers exponentially in time, recovering
completely within 16 hours. However, when TTS has reached 40 dB or more,

recovery may become linear in time.... requiring days or even weeks to

disappear.

2. Noise whose maximum energy is in low frequencies will produce

less TTS than those whose energy is at high frequencies.

3. The maximum effect from noise ... in a narrow frequency range

will be found half an octave to an octave above that range.

4. TTS increases linearly with the average noise level, beginning

at about 80 dB, at least up to 130 dB or so.

5. In intermittent noise .... TTS is proportional to the fraction

of the time that the noise is present. A noise that is only on half the

time (in bursts of a minute or less) can be tolerated for more than twice

the time that could be spent in the noise when continuous before the same

TTS would be produced.

6. Neither growth nor recovery from TTS is influenced by drugs,

medications, time of day, hypnosis, good thoughts or extra-sensory

perception."

I am only concerned in this paper to consider items 1, 4 and 5 of this

summary - those that deal with the process of growth of and recovery from TTS; and

my object is to suggest an approach which may help to produce a more coherent

* picture. Threshold measurements are always difficult, and wide inter- and intra-

subject variations are to be expected. This fact probably accounts for some part

of the scatter and irregularity of published experimental results. But, even so,

these exhibit a degree of inconsistency which demands further explanation.

__ _ __ _ ___ .

I . .. ... .. . IiiII ....... .......... _ _ __......... .. .
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I start from the first words of Item I: "The growth of TTS in dB .."; and

I ask: "Why should we measure TTS in dB?" The obvious answer is: "Because that

is how our instrumentation works", to which may be added: "Because that is how we

hear the loudness of noise." But are these sufficient reasons? TTS must be

basically due to physical or possibly chemical causes which could produce effects

such as the softening of a part of the hearing mechanism that functions as a

spring, or relative movement of two parts due to differential heating, which

might lead to a variation in threshold. These effects could be exponential,

but it seems far more likely that they would produce a shift of the threshold

rms pressure, than of the Zogarithn of that pressure (the dB shift).

This paper sets out to answer, by simple analysis, the question: "If in

fact the rms pressure at threshold is subject to a simple exponential shift

(see section 2) due to exposure to noise, how would that shift appear if measured

in dB?" For the most part, o9ly the simplest case is considered. Curves for

growth and recovery are shown, plotted against normalized linear and logarithmic

time scales, so that the forms can be recognized at sight. The time constants

which might be deduced from these curves are discussed, and the effects of

averaging are considered - since in much published work only averages are given.

The effects of intermittent exposures following these rules are analysed, and

possible mechanisms governing the final or asymptotic threshold shift are

described.

In comparing the calculations with published work, some pronounced dis-

agreement was observed, specifically in dealing with intermittent noise; but on

the whole agreement was good. It is probable that the simple forms studied here

would need elaboration to deal with all the dynamic aspects of TTS; but a start

has been made. This is sufficient to suggest that understanding TTS, and possibly

other acoustic phenomena, might be facilitated by making experimental measure-

ments in pressure rather than in dB. Whether this is a practical proposition

when we are conditioned to use dB, and when all our measuring equipment operates

in dB, is doubtful; but it would be a hopeful step if we could stop ourselves

always, automatically, thinking in dB.

2 ANALYSIS

In the analysis given in this section, it is assumed throughout that the

rate of change of the rms pressure at threshold in steady noise is proportional

to the difference between that pressure and the ultimate, or asymptotic rms

pressure at threshold. Thus, whether in growth or recovery, the threshold will
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always tend fxponentially to an ultimate value if the noise conditions are

steady. This kind of variation with time occurs when there is a step change in

the forcing function applied to a first order, one-degree-of-freedom system, and

is covAon in nature in other connexions than acoustics: for example, the varia-

tion of the voltage on the condenser in an RC circuit for a step change of the

voltage across the circuit, or the variation of the temperature of a body subject

to Newtonian cooling for a step change of the power supplied or of ambient

temperature. Details of the analysis are given in Appendices A, B and C.

2.1 Steady noise

2.1.1 Growth and recovery

p] Pascal rms is the threshold pressure at a particular frequency before

exposure to noise

Pascal rms is the ultimate threshold pressure at the same frequency for

continuous exposure to a particular kind of noise

p Pascal rms is the threshold pressure at the same frequency at time

t minutes from the beginning of the exposure

T minutes is the exponential time constant.

(During recovery, P2 is the initial threshold and p, the ultimate threshold.)

Then

D' = 20 log(p2/p1 ) is the ultimate threshold in dB,

and D = 20 log(p/p,) is the threshold in dB at time t

It is clear that D' must depend on the noise level to which the ear is exposed;

but the nature of this dependence will not be considered in this section.

The forms for exponential growth and recovery, that is, the solution of the

equation dp/dt = constant x (P2 - p) , are given in many elementary textbooks.

In growth:

(P - Pt) (P2 - pp)i - exp(-t/T)] (1)
or

(p/pl) - 1 - [(p 2 /P 1 ) - ][I - exp(-t/TJ

Taking logarithms and substituting antilog (D'/20) for (p2/pl), we have

20 log(p/p ! ) = D = 20 log(I + [I - exp(-t/T)][antilog(D'/20) - 11) . (2)

'44
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In recovery:

(P1 - p) - (P1  p2 )t1 - exp(-t/T)J (3)

or

(p/p2)- I = [(pl/p 2 ) - 11 exp(-t/T)

whence

20 log(p/p2) - D - 20 log{! + exp(-t/T) [antilog(D'/20) - Ill. (4)

Fig la&b show the usual exponential growth and recovery curves given by

equations (1) and (3) plotted against the normalized time (t/T) on linear scales.

Fig Ic&d show the same equations plotted against logarithmic time scales.

Fig 2a&b show the growth and recovery of the dB level D from equations (2) and

(4) against (t/T) on linear scales, for values of D' from 10 to 60. Fig 2c&d

show the corresponding plots on logarithmic scales for (t/T).

2.1.2 Derivation of time constants

The same symbols as in section 2.1.1 are used, and additionally:

T' minutes denotes an apparent time constant

DT dB is the threshold at time t - T

In this section we shall discuss the time constants which might be derived

from dB plots such as those shown in Fig 2. All the methods described have

been used by some experimenters.

(a) For a true exponential form as illustrated in Fig 1, the time constant

is that time at which

(P- P ) - 02 - Pl) [I - exp(-1)] in growth

or

(P P2)  (P1 - P2 ) exp(- 1) in recovery

as shown by the dashed lines in Fig 1.

If, therefore, it is assumed that the dB threshold is a truly exponential

function of time, a time constant may be derived from plots on either linear or

logarithmic time scales by taking the time at which

D - D'II - (I/e)] in growth

or1 (5)

D - D'/e in recovery
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It will easily be seen that these two forms are identical if we refer to the

initial conditions in both growth and recovery, and use a negative value for D'

in recovery. Thus we have a continuous function connecting T' and D' by

combining equations (2) and (5), to give

20 log{1 + [I - exp(-T'/T)][antilog(D'/20) - I] - D'[I - (1/e)] (6)

which gives

(T'/T) - ln[! - antilog(-D/20)] - In[] - antilog(-D'/20e)] . (7)

Fig 3 shows (T'/T) plotted against D' (full line) from equation (7).

Conversely, it is interesting to consider the actual shifts in dB after

a time lapse equal to the true time constant, that is, by putting t - T in

equation (2). It is clear that if D' is large and positive, the term in antilog

(D'/20) is large compared with unity, so that

D T 20 log{[I - (1ie] antilog(D'/20)} - D' - 20 log[e/(e - 1)] - D' - 3.98

...... (8)

Also, if D' is large and negative, the term in antilog(D'/20) may be neg-

lected, so that

DT " 20 log(l/e) - -8.68 (9)

Fig 4 shows a plot of DT against D' , together with the lines given by

equations (8) and (9).

(b) Again, with a true exponential plotted against a linear time scale,

the tangent at the origin reaches the ultimate value at time T , as shown by the

dotted lines in Fig la&b.

Hence, if the dB plot against linear time were assumed to be a true expo-

nential, the same procedure might be applied. We can show (see Appendix A) that

the tangent at the origin to the dB/linear-time plot is given by

D - (t/T)(20/ln 10)[antilog(D'/20) - I

which meets D - D' where t - T' , the apparent time constant, given by

'I
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(T'/T) - D' in 10/{20[antilog(D'/20) - I]) . (10)

As in case (a), this expression can be used in recovery as well as growth, to

give the form shown in the dashed curve in Fig 3.

(c) A glance at Fig 2c&d shows that it is impossible to draw conclusions

from tangents at the origin in logarithmic plots. The origin cannot be plotted

on a log scale, and if a time shortly after the beginning of growth or recovery

were taken, the slope of the tangent is still very small and almost meaningless.

But some experimenters have taken the tangent at the steepest part of the curve

and considered its intercept with D - D' as giving the time constant. This

line is effectively the tangent at the point of inflexion of the curve, and it

can be shown (see Appendix B) that this tangent meets D - D' at a time T'

given by
i (T'/T) xz (11)

where z - x /X -1) and 20 log[] + (x -1) exp(x -D

As before, these expressions hold both for growth and recovery. A plot of

(T'/T) against DO obtained by varying xI from 0.044 (DO - 60) to 5.43

(D' - -60) is shown in the dotted line in Fig 3. It might be argued that it

would be more appropriate to take the time between the intersections with the

initial and final thresholds as the time constant. If this were done, we should

have (see Appendix B) with xI and z defined as before

(T"/T) - x I - [ + (xI - 1) exp(x )I -z. (12)

If plotted in Fig 3, equation (12) would give a curve indistinguishable from the

dotted curve for positive values of D' , but diverging for negative values of

D' to be about 20% lower when DO - 60.

2.1.3 Some effects of averaging

It is clear (see, eg Ref 2) that the TTS produced in individuals by

exposure to the same noise may vary widely both in magnitude and in the rate of

response. The effects of arithmetic averaging of dB shifts in some simple - and

by no means extreme cases - on the apparent response and on the estimated time

constants will be considered in this section.
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Fig 5 shows, with the same arrangement as in Figs I and 2, growth and

recovery for a shift to 30 dB, full line, the average for shifts to 20 and 40 dB

(dashed line) and the average for shifts to 10 and 50 dB (dotted line) all having

the same time constants. The time constant ratio read off these curves by the

methods (a), (b) and (c) of section 2.1.2 are approximately as given in Table I

below.

Table 1

(T'/T) from averaged shifts with the same time constant

thod Growth Recovery

Shifts a b c a b c

30 dB 0.30 0.12 1.5 2.5 3.5 5.0

20 dB and 40 dB 0.29 0.10 1.5 2.7 3.8 5.6

10 dB and 50 dB 0.20 0.05 1.9 3.6 4.3 6.5

The second case, illustrated in Fig 6, is for the results for two individuals

having the same shift but different time constants TI and T . The results

are shown plotted against the time relative to the mean time constant

T = (T1 + T2)/2 , and the ratios of the time constants are I (clearly the simple

case shown in Figs 2), 3, 9 and 27. The time constants, relative to the mean time

constant T which would be deduced from these curves are approximately as given

in Table 2 below.

Table 2

(T'/T) from averaged shifts with different time constants but
the same ultimate shift

eGrowth Recovery

a b c a b c
T /T2 T TI/T T2/T

I 1 0.30 0.12 1.5 2.5 3.5 5.0

3 1.5 0.5 0.28 0.11 1.5 2.15 2.8 5.3

9 1.8 0.2 0.20 0.10 1.3 1.95 1.3 4.6*

27 1.93 0.07 0.14 0.08 1.5 1.9 0.6 2.3*

* from the first steep decline
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2.2 Regular intermittent exposures

Suppose the ear is exposed alternately to noises of the same kind but

different levels which would, if continuous, ultimately produce shifts to p2

and p' Pascal rms, or D' and D" dB.

X2n-l and x2n are the threshold pressures and V2n_| and D2n are the

dB thresholds after the nth exposures to the first and second noises respectively.

If the period of exposure to the first noise is tI minutes, and to the

second noise is qtI minutes, let y = exp(- tI/T) . Then it can be shown

(see Appendix C) that for exponential growth (or recovery) during each exposure,

X2n = Plyn(q+,) + [p2 0 - y)yq + p(l - yq)] yn(q+,)]/, - y(q+l)] (13)

Ultimately, after very long periods, the terms involving yn may be neglected

since y is always less than unity, hence

X2n - [p2yq(l- y)+ p;( - yq)]/[I - y(q+1) * (14)

Then, if (tl/T) is large, y is small, so that x2n - p2 , as might be expected.

On the other hand, if (tI/T) is small, y is close to unity, and

X2n - 02 + p2q)/(l + q) (15)

or, in dB

D2n - 20 logf [antilog(D'/20) + q antilog(D"/20)]/(l + q)l • (16)

If the first noise is effectively quiet, P2  P,

and

D2n 4 20 logl [l + q antilog(D"/20)1/(l + q). (17)

If the periods of exposure are not short, so that terms in y may not be

neglected, we can select the special case where periods of quiet alternate with

equal periods of noise. Then, from equation (14), we have

X2n (p y + p')/(y + 1)
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Then if (p2/pl) is large compared with y

D2n - D" - 20 log(l + y) . (18)

The particular case of short exposures to noise alternating with short periods of

quiet, as in equation (17), is illustrated in Fig 7, where the limit of D is

plotted against the exposure ratio k = q/(1 + q)

2.3 Complex responses

The analysis so far has dealt only with the case where TTS is due to one

mechanism having a fixed time constant and a known relationship between the

ultimate shift and the intensity of the noise. But study of published results

suggest that this may often be too simple a model. We know, for instance, that

noise exposure may produce tinnitus, which will produce an apparent TTS by

masking the threshold at some frequencies - but a genuine shift may be present

at those frequencies at the same time. In this case if the two effects are in

series, the apparent TTS will be due to the greater of the tinnitus-masked

threshold and the actual threshold. Conversely, if the effects are in parallel,

as for instance if the two ears of an individual respond differently and the

threshold for the individual be measured in free field, the measured threshold

shift would be the lower of the two shifts. But this situation, though common

enough in real life, is rare in experiments, and will not be considered further.

Among many possible combinations, we shall consider only one, that in which

there are two responses with different time constants and with ultimate shifts

dependent on the noise exposure according to different laws. In this analysis it

will be assumed that the rms threshold pressure shifts are proportional either

to the rms pressure of the noise, or to its square.

2.3.1 Variation of ultimate TTS with noise level (linear or square law)

Let the noise level be L dB, where L = 20 log(P/p r) , Pr being the

reference pressure 20 uPa, Suppose then that the ultimate threshold pressure

shift is proportional to the nth power of P , that is

n
P2- l = AP ,

where A is a constant

cn I lrl 1I|
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hence

D' 20 log(p 2 /P 1 ) 20 log[i + A' antilog(nL/20)]n

where A' = A/(plprn)

which may be written

D' = 20 log{l + antilog[n(L - C)/201} (19)
n

where C is a constant equal to -(20/n) log A'

For a linear relationship n = 1, and for a square law n = 2, so substituting

in equation (19) we have

the linear law: DI 20 logil + antilog[(L - Cl)/201] 1and 
. (20)

the square law: D2  20 logf + antilog[(L

Fig 8 shows the form of D' and D' for various values of the parameters C l

and C2 .

It may be noted that D' = D2 when L = 2C2 - C, ° Thus for smaller

values of L , the linear law governs the ultimate shift, and for larger values

of L , the square law, if the two mechanisms are in series.

2.3.2 Growth and recovery when both linear and square law operate

The forms for growth and recovery when we have a linear law with the con-

stant CI and time constant TI and a square law with the constant C2 and

time constant T2  is given by substituting from equation (20) in equations (2)

and (4), and in each case plotting the maximum value. Thus in growth, the thresh-

old will be the greater of D and D2 where

Dl = 20 logIl + [1- exp(-t/Tr)] antilog[(L - C1 )/20]1

D 2  = 20 log{! + [I -exp(-t/T )A antilog[(L - C)/loll
202gl+[ 2 C2)0]J

and in recovery, the threshold will be the greater of

D, = 20 logl + exp(-T/T antilog[(L - C1)/20]1 (

. (22)
D2 = 20 logeI + exp(-t/T 2 ) antilog[(L - C2 )/10] }
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Fig 9 shnws the forms for the particular case where T =10T, C 60 and

C2 = 70, for values of L from 70 to 100.

3 DISCUSSION

Before discussing the analytical results in detail, we shall first (in

section 3.1) see how far the forms illustrated in Figs 2, 5, 6 and 9 are consis-

tent with the general summary quoted in the Introduction, and second (in

section 3.2) discuss some of the problems involved in measuring temporary

threshold shift.

3.1 Comparison with Ward's summary (see Introduction)

The analysis given in section 2 can relate only to items I, 4 and 5 of

the summary.

Item 1: Fig 2c shows that for reasonably large ultimate shifts "the growth of

TTS in dB is nearly linear in the logarithm of time" for the exponential growth

of rms pressure at threshold - that is, until the ultimate level is approached.

Also, "moderate TTS" does "recover exponentially" under the exponential pressure

rule, as shown by Fig 2b&d - though they do not show that TTS "recovers com-

pletely" at any time, since complete recovery is impossible in any asymptotic

process. "When TTS has reached 40 dB or more, recovery may become linear in

time, requiring days or even weeks to disappear"? Again, it can never completely

disappear, but Fig 2b certainly shows recovery very nearly linear with time for

large TTS, or, from Fig 2d, after an initial period of apparently slow recovery,

TTS does vary nearly linearly with the logarithm of time until the ultimate level

is approached.

Item 2 "TTS increases linearly with the average noise level." The curves of

Fig 8 show that for moderately large values of TTS either the linear or square

law would give rise to approximately linear relationships, having regard to

experimental error and the general paucity of data points. This does not show,

of course, that either of the laws holds, only that neither is incompatible with

the statement of Item 2.

Item 5 "TTS is proportional to the fraction of the time that the noise is

present" so long as the noise comes "in bursts of a minute or less". Here we may

refer to Fig 7, which shows that TTS could be taken as linear with the exposure

ratio for small values of ultimate shift under the same noise uninterrupted, say

M up to about 20 dB; but above this level the curves are definitely nonlinear.
cn Also, the analysis shows that if the exponential pressure law holds, a noise that
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is only on half the time will never produce the same TTS as the continuous noise.

Ward's assumption appears to be that it will merely take longer to reach that

level, and this cannot be true under the exponential pressure law.

On the whole, however, it seems that the exponential pressure form does

not contradict the basic ideas about TTS which are generally accepted. It

remains to consider the implications of the analysis, and to compare the forms

with some published results. But before such comparisons are instituted, it is

as well to consider the probable sources of error inherent in threshold measure-

ments, and also the effects that may be introduced by averaging.

3.2 Errors in measurement of TTS

As already mentioned (section 1), measurements of hearing thresholds are

notoriously difficult to make with accuracy. They must always be interpolations

between the level at which the subject definitely cannot hear the signal and the

level at which he definitely can. With trained and practised subjects the dif-

ference between the levels may be as little as 5 dB, though 10 dB is probably

more common. In addition, it is well-known that threshold levels at low

frequencies may be masked by physiological noise, and at many frequencies by

tinnitus (which may sometimes be caused by exposure to noise). These effects are

probably more important when the test signal is presented at the ear in some kind

of ear-muff, than when the signal is presented in free field.

Threshold measurements must be taken in quiet surroundings, so that, if we

wish to measure the growth of shift during an exposure, the exposure is neces-

sarily interrupted for at least a few minutes, and it is necessary to allow for

this in assessing the duration of the exposure. Alternatively, measurements may

be made at the conclusion of the exposure only; but this clearly involves a long

and tedious process if several points on the growth curve are to be obtained,

since recovery must be nearly complete before it is possible to reproduce the

growth pattern. Hence, in addition to the errors probable in any threshold

measurements, there are further sources of error in measuring TTS so that, for an

individual ear errors of the order of 5 dB are probable. Since it is considered

unethical to produce shifts exceeding 30 dB, the probable errors are of the order

of one sixth of the maximum (in dB) and frequently a much larger proportion.

To eliminate at least some of the probable error, it is customary to

average results for several subjects, and sometimes for several tests frequencies.

But we have shown (section 2.1.3) that if TTS is governed by any exponential

pressure law, comparatively small variations between individual results may mask
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the nature of the shift, as shown by the analysis of Tables I and 2. On the

whole, those averaged results suggest that there is likely to be more consistency

about averaged growth data than about averaged recovery data. It will be seen

later (section 3.3.1) that the range averaged in the examples is less than has

been found by at least one experimenter.

The majority of papers on TTS report averages only. Some of these will be

considered later; but of more interest are the individual results to be reviewed

in the next section.

3.3 Comparison of analytical forms with published data on growth and recovery
of TTS

Much of the data considered here has been derived from published graphs and

is re-plotted in Figs 10 to 15 in forms similar to Fig 2. This assists compari-

son, but there is inevitably some copying error.

3.3.1 Individual ears

In the text-book Noise and Man2 two sets of individual data are recorded,
3 4 5 .one from Mills et al the other from Ward et al . In addition, Barry gives

some results on his own right ear. These data are reproduced in Figs 10, 11 and

12 respectively.

In Fig 10 we have data on TTS at 750 Hz for an individual exposed to an

octave band of noise centred at 500 Hz and at levels of 81.5 and 92.5 dB re 20 UPa,

for periods up to 2 days, and for subsequent recovery over a period of a week.

The curves have been drawn using equations (2) and (4), assuming a time constant

of 390 minutes in each case, and ultimate shifts of 10 and 28 dB. It will be seen

that the curves fit the growth data very well. The fit to the recovery data is

less good - there seems to be a tendency to a flatter type of recovery curve -

nevertheless, none of the measured thresholds is more than about 5 dB from the

recovery curves.

In Fig Ila we have data on the recovery of the 12 ears of six subjects from

the TTS at 3 kHz induced by exposure for 6 hours to intermittent noise in the

frequency range 1.4 to 2 kHz. This graph is slightly simplified, in that where

two or more curves lay within about I dB all the time, only one curve has been

drawn (see Table 3 below). In Fig llb we have curves constructed from equation (4)

to fit the experimental results using the values for time constants and initial

shifts given in Table 3. It will be noted that in three cases, curves 2, 5 and 6,

it was necessary to postulate a double exponential in order to obtain a reasonable

fit. No attempt was made to fit curves to the smallest shifts, since these
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seemed very erratic, and there are no data between the 2nd and 15th minutes when

most of the recovery must have taken place.

Table 3

Key to Fig II

Dy~ T D2 TSubject Ear Curve 1 I 2 2
(dB) (min) (dB) (min)

W L 1 37 1200
R 5 17 30 10 330

L 2 36 100 32 670
R 5 17 30 10 330

N L 3 30 400
R 3 30 400

L 4 18 500
R 4 18 500

D L 6 14 5 6 100
R 8 - -

U L 7 - -

R 5 17 30 10 330

It is interesting to note that for only two of these six subjects is the

recovery of the two ears similar.

Comparison of Fig 11a&b shows that the analytic curves fit the data fairly

well, the most marked difference being for curves 2 and 3. These analytic

curves approach zero more rapidly than the experimental curves, suggesting that

there may be another mechanism causing slower recovery at low shifts.

The wide variation in Fig 11 suggests very strongly that suoh results, so
disparate in magnitude and form, cannot be averaged and retain any meaning.

Fig 12 gives the growth and recovery (from Ref 5) at 707 Hz during and

after exposure to an octave band of noise centred at 500 Hz at levels of 95 dB

and 90 dB re 20 PPa, and at 2828 Hz on and after exposure to an octave band of

noise centred at 2 kHz 85 dB and 80 dB re 20 UPa. The recovery data at 2828 Hz

led in the original plots to final thresholds of about -3 dB, but, since the

final TTS in growth was about 3 dB below that measured somewhat earlier, as can

be seen in Fig 12a, it seemed reasonable to raise all the recovery measurements

at 2828 Hz by 3 dB, and that is how the data are plotted in Fig 12b. The curves

in Fig 12 were constructed from equations (2) and (4), using the constants given

in Table 4 below.
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Table 4

Key to Fig 12

Growth Recovery
Test Exp. level

frequency D Tl De vT D' T

(Hz) (dB) (dB) (min) (dB) (min) (dB) (min)

707 95 20 85 30 500 30 500
90 21 85 21 500

2828 85 14 400 14 400
80 9 400 9 400

It will be noticed that a double exponential was needed to fit the growth

curve at the higher level of exposure at 707 Hz. Inspection of Fig 12 shows that

again the fit during growth is better than for recovery, and once again there

seems to be a tendency for some other mechanism to take over in the final stages

of recovery.

Barry5 also gives plots for one other subject for growth of and recovery

from TTS at 2828 Hz. The growth data show a maximum shift of 19 dB at 2 hours,

and there is one data point earlier than this: 10.5 dB at I hour. It is

impossible to fit an exponential pressure curve to these points; but, since

errors of at least the order of 2 dB are possible, this does not show that the

shift is not an exponential pressure form. The recovery for this subject shows

a very nearly linear decline against log time, and Barry states that all the

subjects produced similar forms at 2828 Hz, as in the example shown in Fig 12b.

On the whole then, it has been found that growth patterns for individual

ears can be fitted with exponential forms either simple or double. The fits

to recovery data are not quite so good, though still reasonable except in the

final stages and for very small shifts. The time constants found range from

5 minutes to 1200 minutes, but are mostly in the neighbourhood of 400 minutes.

There is some indication that very small shifts may have very long time constants,

and this effect would show up much more in recovery than in growth where the more

rapid shifts would mask it. This is apparent from the analytic.curves of Fig 9,

where it can be seen that the growth curves are dominated by the shorter time

constant and the recovery curves by the longer one. In particular, it can be

seen that where both mechanisms lead to the same ultimate shift (as in the shift

W to 21 dB in Fig 9), the growth curve is simply that for the shorter time constant,

and the recovery curve is that for the longer time constant.
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3.3.2 Averaged data for growth and recovery

Host general papers and textbooks on TTS cite some one or other of sets of

curves given by Ward at different times and in different connections for growth

and recovery against logarithmic time scales. Burns2 gives, from Ref 6, the sets

of straight lines shown in Fig 13a. These show the averaged TTS at 4 kHz for the

two ears of 13 men, 2 minutes after exposure to noise in the band 1200-2400 Hz

at difference levels, as marked on the lines, for four periods lasting up to

100 minutes. Only the lines are shown in Fig 13a, but they are very good fits

to the points. If we compare these lines with Fig 2c, it is easy to see that

exponential forms could give rise to lines similar to these, assuming a time

constant of about 300 minutes, and ultimate shifts for the four exposures of

about 29, 37, 45 and 52 dB. In recovery, the lines shown in Fig 13b are nothing

like the curves of Fig 2d. For a time constant of 300 minutes one would expect

hardly any recovery at all in 100 minutes, certainly not more than about 3 dB

whatever the initial threshold. But if we have wide variation, although indi-

vidual ears may show exponential recovery from varying levels and with different

time constants, the averages over fairly short periods may appear linear. The

curves shown in Fig Ila, for instance, will give an average straight line on the

log time scale up to 100 minutes. Hence, though the lines in Fig 13b cannot be

said to support the exponential theory, neither do they entirely confute it.

Among other experimenters who have discussed time constants, Mosko and

Fletcher7 present median data for 17 subjects exposed to noise with a flat

spectrum up to 250 Hz, and falling off at 10 dB/octave above this frequency.

The OASPL was 103 dB re 20 uPa, and exposure lasted 48 hours. Exponential

curves of the forms

TTS t - D' 11 - exp(- t/T (23)

TTS t  W D' exp(- t/T) (24)

were fitted by a least-squares process to the growth and recovery data in dB,

respectively, to the data for the two test frequencies where the shift was

moderately large. The results are given in columns (c) and (d) of Table 5 below.

It will be seen that there is a wide range of time constant, and that the

variation conforms to the exponential pressure shift theory in that the apparent

time constants in recovery are greater then those measured in growth.
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Table 5

Time constants for &rowth and recovery (from Ref 7)

Time constants (minutes)

Test frequency D' Given in Ref 7 rdii la
________!curve a FiY

(Hz) (dB) Growth Recovery Growth Recovery

(a) (b) (c) (d) (e) (f)

500 13 301 495 500 265
2000 15 147 630 260 295

Fitting equation (23) or (24) to the data to determine the time constant is

similar to method (a) of section 2.2.1, illustrated by curve (a) of Fig 3. Thus

if the shift is governed by the exponential pressure law, the true time constant

can be determined from the figures in coluns (c) and (d) by dividing these by

the ordinate for the positive or negative ultimate shift of curve (a) in Fig 3.

The values so obtained are given in columns (e) and (f) of Table 5. It will be

seen that, apart from the data for growth of TTS at 500 Hz, the results suggest

a time constant of about 250-300 minutes. This treatment has therefore produced

somewhat more homogeneous results than the original treatment, and the agreement

with the exponential pressure shift theory for a single time constant, is quite

as good as could be expected from averaged results.

Barry's averaged data for the right ears of five subjects are mainly given

in the form of the equations to linear approximations to parts of the curves;

but he gives plots for growth and recovery at 707 Hz and 2828 Hz. Recovery at

2828 Hz shows a linear decline against log time, as already mentioned in

section 3.3.1, but the other plots show a superficial resemblance to the curves

of Fig 2c&d. However, on closer investigation exact matching turns out to

be impossible. Barry's figures are sunarized in Table 6 below.

Table 6

Linear approximations to average data (after Barry5

Test frequency Shift A B C D E F A' E'
(Hz) (dB) I I
(a) (b) (c) (d) e (f) (g7 (h) (i) (j)
500 10.5 4.6 5.69 -2.3 7.96 -5.5 11.13 7.5 -10.3
707 16.7 7.3 8.81 -1.5 14.83 -9.1 18.20 10.7 -17.8

1000 13.8 6.0 7.13 -3.1 10.56 -9.5 16.23 9.4 -14.1
2000 4.5 7.7 -1.13 - - -1.8 1.64 3.6 -4.0
2828 11.3 7.5 5.12 - - -3.5 4.56 8.0 -11.2
4000 7.7 10.7 0.80 - - -2.2 2.37 5.8 -7.3
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In growth, Barry gives approximations of the form TTSt W A log t + B

for the steep region of growth, as given in columns (c) and (d) of Table 6. It is

clear that this line should be close to (though probably slightly less steep

than) the tangent at the point of inflexion given by equation (B-6) of Appendix B,

but this slope is dependent on the ultimate shift D' given in column (b). The

value of A corresponding to D' is given in column (i); and it will be seen that

the correlation between Barry's results and equation (B-6) is not generally good.

For example, at 707 Hz D' is 16.7 and A is 7.3, but the slope corresponding

to this ultimate shift is about 10.7. Since the first data points are at I hour,

when about half the growth (in dB) has already occurred, we should expect the

slopes to be somewhat lower than those of the inflexion tangent, which may account

for some part of the difference. Also, we have shown that averaging probably

tends to reduce the slope. Hence, the averages for growth are not necessarily

inconsistent with the exponential pressure theory.

For recovery, Barry gives approximations for an initial slow recovery, of

the form

TTS t = C log t + d

followed by a steeper recovery

TTS t = E log t + F

at the lower test frequencies; but he gives only one approximation for the higher

test frequencies. The constants for C, D, E, F are given in Table 6, columns

(e) to (h).

The slope E' of the inflexional tangent corresponding to the initial

TTS (which would be expected to be approximately the same as E) is given in

column (j).

Again it will be seen that the agreement is poor. Nevertheless, the effects

of averaging might be sufficient to account for the discrepancies at low

frequencies. The high frequency results are more difficult to reconcile with the

exponential pressure theory.

The last paper which will be discussed in this section deals only with

averaged results and purports to define TTS in terms of exponentials.

Mills et at 8 assert that the growth of TTS in dB can be expressed as a simple

exponential function with time constant 2.1 hours, and recovery as a simple

exponential function with time constant 7.1 hours. (That is what it says in the
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summary - in the text the figures are 2 and 7.2 respectively.) This is said to

hold so long as the ultimate shift does not exceed 30 dB. The statement is equi-

valent to equations (23) and (24), with T = 2 in growth and T - 7.2 in recovery.

The assertion is illustrated by a picture with numerous experimental points

from various sources marked on it. This is reproduced in Fig 14, except that the

experimental points are not entered only, the bands within which they lie are

marked in with dashed lines.

Now quite clearly, these curves are not exponentials - if they were they

would look like Fig la&b, and certainly they could not cross the time axis as

the growth curve does near the origin and the recovery curve does at about

25 hours. The only points in which they agree with exponentials are in the

final conditions in growth and the initial conditions in recovery, and in the

points at which t - T on both curves. What the actual equations of the curves

are I have not been able to determine, if indeed they have analytic forms and are

not simply free-hand drawings through two points! However, if we consider the

actual values quoted for the time constants and compare them with the average

values to be expected for shifts from say 5 dB to 30 dB, we find, using curve (a)

of Fig 3, that in growth the average time constant will appear to be about 0.53

times the true time constant, and in recovery about 1.8 times the true time

constant. Hence the values of 2 and 7.2 for T' in growth and recovery, lead to

estimates of about 3.8 and 4 hours respectively for T . Thus, in this respect,

the agreement with the exponential pressure theory is quite good.

3.4 Comparison with published data for the variation of ultimate shifts with

the noise level

3.4.1 Results for individual ears

No data for individual ears has so far been found except that already cited
3 5in section 3.3.1 from Mills et at and Barry . These data are reproduced in

columns (a) to (e) of Table 7 below.

In each case we have only two points from which the apparent exponent,

the slope of the line joining them, may be calculated, as shown in column (f)

of Table 7. On the other hand, if we assume, as in section 2.3.1, that the

threshold pressure shift is proportional to some power of the rms pressure

of the noise, from two points we can calculate the values of n and C to

fit equation (19). The values so calculated are shown in columns (g) and (h) of

W Table 6. Since measurements of ultimate TTS are liable to errors of at least

1 dB, the margin of error in these calculated values is large - the values of n
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Table 7

Relation of ultimate shift to level of noise exposure
(data from Refs 3 and 5)

Noise Test Shift Calculation from equation (19)
frequency D'

Source cf Level Slope n C
(Hz) (dB) (Hz) (dB)

(a) (b) (c) (d) (e) (f) (g) (h)
81.5 10

(1) Ref 3 500 92.5 750 28 1.64 1.90 78.0

90 21
(2) Ref 5 500 90 707 21 1.80 1.91 79.4

95 30
80 9

(3) Ref 5 2000 80 2828 9 1.00 1.35 78.2
85 14

incases (1) and (2), for instance, are not reliably different from 2. In

case (3), since the shifts are so small, even larger errors are probable. If

we had 10 instead of nine in column (e), n would be 1.07; and if we had 8,

n would be 1.69. Thus in case (3) one is not really justified in saying more

than that the exponent appears to be between I and 2. But in cases (1) and

(2) one can say with fair confidence that the exponent is about 2.

3.4.2 Averaged results

Mills et aZ8 considered averaged results from many sources on the asymptotic

threshold shift at the frequency of greatest shift due to exposure to an octave

band of noise centred at 4 kHz, and gave empirical formulae to fit the data.

Using the symbols used hitherto in this paper, these were:

D' = 1.7(L - C) for 8 < D' < 30 (25)

and for a better fit at low levels of TTS

D' 17 log{1 + antilog[(L - C)/10 } (26)

where C i 74.

The illustration given in Ref 8, containing averaged data points from many

sources is reproduced in Fig 15a. (The curve purporting to represent

equation (26) in Ref 8 is shown by the full line, but its correct presentation

is as shown by the dotted line.)
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Fig 15b shows the same data points, and the curve given by equation (19)

for n - 2 and C - 76, ie

D' - 20 log(l + antilog[(L - C)/10]} . (27)

It will be seen that the fit is somewhat better than for the curves in Fig 15a.

The line D' = 2(L - 76) is also plotted in Fig 15b, and it will be seen that

the apparent exponent is less than 2 for shifts of less than 30 dB. Thus,

a straight-line approximation to a pressure square law shift will always yield

an apparent exponent less than 2 unless the shifts are large. Also in Ref 8,

data from various sources on cats and chinchillas exposed to octave bands of

noise are combined in a single plot with data on man, and shown to fit

equations (25) and (26) when referenced to values of C varying according

to the animal and the frequency of the noise. (Once again the curve is plotted

incorrectly in the original paper.) The data points are reproduced in Fig 15c,

and the curve shown is given by equation (27), assuming a 2 dB increase in the

reference level C . It will be seen that the fit is very good indeed.

Thus, it is clear that the figures for asymptotic threshold shift quoted

by Mills et al can be fitted by a simple pressure squared law - a much more

manageable, and perhaps theoretically explicable, form than that proposed by

Mills.

Part of the reason why many experimenters try to fit straight lines to

shift/exposure-level data is that they wish to fix on critical levels below

which no serious danger to hearing is incurred, and the intersection of straight

lines gives a very clear fix. The critical level is taken to be that at which

equation (25) meets the zero shift line, that is, C dB is taken to be the

critical level. But it is clear that the value of C will vary according to

the range of threshold shifts involved: the smaller the shifts the flatter the

curve and the lower the value of C . It would be more consistent to fix on an

arbitrary level of mean shift, and regard the level of noise giving rise to that

shift as the critical level - though, indeed, it has yet to be shown conclusively

that TTS has any bearing on permanent threshold shift.

3.5 Comparison with published data on TTS due to intermittent exposure to noise

It may be said at once that published data do not agree well with the

analysis presented in section 2.2. No results for individual# have been found,

but averaged results for the levels reached after certain exposures are given in

Ref 9, and in Ref 10 which also reports recovery.
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Ward et al9 exposed subjects for 2 hours to 45-second bursts of octave

bands of noise of various frequencies, alternating with 45-second bursts of

weaker noise of the same kind, in the first tests so weak as to be effectively

quiet. In each test TTS2 and TTS120 for the two ears of each of five

subjects at 2.8, 4 and 5.6 kHz were measured and averaged. The level of the

louder noise was maintained constant, and the level of the weaker noise was

increased in subsequent tests, up to about 10 dB below the level of the louder

noise. From a plot of the threshold against the level of the weaker noise, the

level L dB, of this noise was determined for which the shift began to increase

above the shift, DH dB for the louder noise, H dB , alternating with quiet.

L was called the critical level. The results for TTS 2 are summarized in

columns (a) to (d) of Table 8 below.

Table 8

Determination of critical levels (data from Ref 9)

Noise levels Threshold shifts Calculate L'

Noise cf (dB) (dB) (dB)

(kHz) H(igh) L(ow) DH DH' DL' n 2 n =

ka) (b) (Tc - (d) (e) -(:C ) h)
0.25 105 77 6.0 16.9 7.9 98.9 92.8
0.5 100 76 6.5 17.8 8.2 93.7 87.3
1 95 69* 5.5 16.1 7.6 89.2 83.3
2 90 68 7.5 19.4 8.8 83.2 76.5
4 90 60* 17.0 31.6 15.9 81.5 73.0

* Said to be doubtful because of "lack of monotonicity of the data."

Columns (e) to (h) give various figures derived from the data and from

Appendix C, assuming a time constant of 300 minutes throughout. Details of the

calculations are given at the end of Appendix C.

Column (e) gives the ultimate shift, D' dB, to be expected according to

equation (C-Il) for continuous exposure to H dB. Column (f) gives the ultimate

shift, DL dB, for a continuous exposure to a level L' dB where H and L'

alternating would increase DH' by I dB. Columns (g) and (h) give the values of

L' according to a square or linear pressure law (equation (20)) which would

produce the shifts of column (f).

The constants used in these calculations are almost arbitrary, so one would

not expect exact agreement with experimental results. Nevertheless, the

figures in columns (g) and (h) show the order of the level of weaker noise which

would be expected (according to the analysis of Appendix C) to produce the
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observed effects, following either the square or the linear pressure law. The

differences between the values of L and L' are so large, of the order of

20 dB for the square law and 12 dB for the linear law, that it is clear some

other explanation is required.

Another fairly recent paper by H~tu and Tremoli~res I0 describes an experi-

ment in which 20 subjects were exposed to equal periods of broad-band noise of

alternately lower and higher levels. The total period of exposure in each case

was 128 minutes, and the cycles (one exposure at low level followed by one at

high level) lasted 1, 8, 32 or 64 minutes. The levels used were:

(1) effective quiet alternating with noise at 99 dB(A)

(2) noise at 93 dB(A) alternating with noise at 98 dB(A).

In addition there was a continuous exposure to noise at 96 dB(A). Averaged

threshold shifts for all ears at 4 and 6 kHz at 7 minutes and at subsequent

times up to 4 hours after the end of the exposure are reported. All the results

show more or less linear recovery against a log-time scale, and nearly complete

recovery at 4 hours.

The results for the second type of alternating noise show a variation of

TTS7  from about 19 dB for the shortest cycle to just over 20 dB for the longest,

compared with.21.5 for the continuous noise. These differences are said not to

be statistically significant, and can be shown not to be inconsistent with the

analysis of Appendix C. But for the first series of tests, the results are

approximately as follows:

Cycle time (minutes) 1 8 32 64

TTS7 (dB) 11.5 15.5 17 19.5

but equations (C-16) and (C-17) show that if the exponential pressure law holds,

the difference between the ultimate levels reached for very long cycles and

for infinitesimal cycles cannot exceed 6 dB. Obviously, we have less variation

than this in cycle length here, and the ultimate levels have probably not been

attained, and both these factors should tend to reduce the range between the

shifts for the shortest and longest cycles. But the difference is actually 8 dB.

It is clear therefore that these results are not compatible with the simple

exponential pressure theory.

3.6 Variation of recovery patterns from the same level

It has been found by some experimenters that the form of the recovery from

a given TTS at a given frequency is not independent of the characteristics of
2.the noise which produced the shift. (Burns discusses this problem on p 207.)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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The fact that in this Memorandum, it has often been necessary to postulate a

double exponential to represent growth and, more particularly, recovery curves

for individuals suggests an explanation. It has already been pointed out

(section 3.3.1) that if mechanisms having different time constants are present

in one ear, growth tends to be dominated by the shorter time constant and

recovery by the longer one. Now, suppose we have two such mechanisms, with

time constants T and T2 where TI > T2 , and we have a shift to, say D dB,

after exposure to two different noises, N and N' . Now suppose N has

produced the shift D with the time constant T! , while at the same time pro-

ducing a shift E dB, where E < D , with the time constant T2 . Then in

recovery the longer time constant T will operate throughout. On the other

hand, suppose N' has produced the shift D with time constant T2 , and at

the same time a shift to E' , where E' < D , with the time constant TI . Here

in recovery the shorter time constant will operate until a level rather less

than E' is reached, when the longer time constant will take over. Of course,

if E' were very small, the effect of the longer time constant might not

appear at all. There is no reason, of course, why the number of mechanisms

involved should be limited to two; the argument has been restricted to two

mechanisms for the sake of simplicity. Thus, wide variations of recovery

patterns from the same shift are possible, composed to different extents by

systems with different time constants.

3.7 Summary of comparisons with published data

Comparisons with published data have shown that in general the growth of

individual threshold shifts fits well with the pressure exponential law, though

sometimes two systems are required. For averaged results also, as represented

by the accepted straight-line forms, the fit is good over limited ranges.

Agreement with recovery forms for individuals is not quite so good as

for growth and frequently requires the postulation of at least two systems to

obtain a good fit. Often also the last stages of recovery appear to be governed

by very long time constants. The analysis has shown that longer time constants,

if they exist in the same ear with shorter ones, may not be observed during

growth but will dominate recovery. An enormous range of individual responses

exist - for one condition (see Table 3) the range of time constants in 12 ears

was from 5 to 1200 minutes, and the range of shifts from 5 to 37 dB.

It has been shown that the average ultimate shifts for tests at particular

frequencies after exposure to particular types of noise can be represented by



27

the simple formula for the response to a pressure square-4 law:

D' = 20 log{I + antilog[(L - C)/1011 (28)

where L dB is the noise level and C is a constant for the particular circum-

stances. C appears to be about 2 dB greater than the 'critical level' proposed
8

by, eg Mills .

Attempts to match the exponential pressure law to some published results on

intermittent exposure were unsuccessful, possibly due to the fact that compari-

sons with averaged data only were made, but possibly to more fundamental causes.

The possibility that more than one mechanism may be involved in producing

TTS suggests reasons why recovery from the same level of TTS at a given

frequency may vary according to the type of noise which produced it.

4 CONCLUSION

Analysis of the forms to be expected if temporary threshold shift were

governed by simple exponential pressure rules have been presented, and the

results have been compared with a limited selection of published dat It has

been shown that the rules adequately represent conditions during the growth of

TTS in steady noise, and slightly less well the conditions during recovery, at

least for individual ears. It has also been shown that the ultimate or

asymptotic threshold shift for given types of noise and test frequencies, can

be simply expressed if the shift of threshold pressure is assumed proportional

to the square of the noise pressure. These simple rules do not appear to fit

data on intermittent exposures, and here further investigation is required.

As a general conclusion, it is believed that much of the difficulty in

understanding TTS can be ascribed to three main causes:

(1) The difficulties inherent in threshold measurements make for inexact

data.

(2) The habit of averaging widely scattered results prevents the under-

standing of the mechanisms involved.

(3) The automatic use of the dB and the custom of trying to fit straight

lines to every set of results have prevented the recognition of many

simple effects. It is hoped that the analytic curves given in this

paper may help experimenters to recognize the underlying principles

even though results are presented in dB.
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Only a very limited selection of data has been studied; a much more com-

prehensive survey would be necessary before the conclusions reached here could

be applied with confidence to all circumstances. Intermittent exposures, in

particular, require further study. Also many facets of TTS (such as its relation

to permanent threshold shift) have not been considered here at all. Even so,

it is believed that the procedures given here point the way to better under-

standing of TTS, and possibly of other acoustic phenomena.

W



29

Appendix A

TANGENT AT ORIGIN OF dR/lin-TIME PLOT

We start from equation (2) of section 2.1.1 (using the same symbols)

D =20 log{] + [I - exp(- t/T)1 [antilog(D'/20) -11.(A-1)

For convenience, write [antilog(D'/20) - 11 = A , and t/T =x and we may

then write

D = 20 log e ln{1 + A[I - eX] } (A-2)

dD/dx - 20 log e Ae-x/0I + AUI - e-1} , (A-3)

if n = 0,
dD/dx = 20A log e

Hence the tangent at x = 0 is

D = 20 Ax log e (A-4)

which meets D =D'

where x = T/T =D'/{20 log elantilog(D'/20) ( ] A-5)
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Appendix B

TANGENT OF INFLEXION ON dB/log-TIME PLOT

We start from equation (2) of section 2.1.1

D = 20 log {I + [I - exp(- t/T)I [antilog(D'/20) - 1j)} (B-1)

As in Appendix A, let t/T = x and antilog(D'/20) - I - A . Also since we are

concerned with the slope relative to the log of (t/T), let log x - y

Then

dx/dy = x/(log e) = x in 10 (B-2)

D - 20 log e ln{D + All - e-xJ}

Hence

dD/dy - (dD/dx) (dx/dy) -2OAxe-x / {I + A[ll - eX 1 } (B-3)

d 2D = d -dD\ dx _2OAx e- [I - x + A[D - x - eliD(B4

dy 2 TX TY) dy log e{1 + All -e])

2 2
d D/dy =0 when x = xi

where I X I + A 1 - x I ~d 1 0, (B-5)

the other possible solutions being trivial.

It is convenient to express all the variables in terms ofx

A = (xi )/Ixi e'

D' 20 log(A + 1) - 20 log I + (x 1 l)el] *B-6

The slope at y -log x1  is 20(1 x x1)

and the value of D is

D, 20 logx/F + (x1  I)e 1  
- 20 log x I + D'I 1/ 1 1
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Hence the tangent at the point of inflexion is

D - 20 log {xi/12 + (X I - O)e'11 + 20(1 - x I log(x/x I) (B-7)

which meets D - ' where t = T', say, and T /T-x

where ZM x1/(x -1 (B-8)

This gives the time of the intercept of (B-7) on D D ' from the beginning of

growth or decay. Alternatively, the difference between the timies for D D' and

D 0 ight be used. This would give t = T"= T' - To, say

where T 0/T -= V1 + (x1 - )exI]-

eneT"/T = TV,{I - + (x I - 1)e'} (B-9)
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Appendix C

ALTERNATING EXPOSURES TO TWO DIFFERENT NOISE LEVELS

Using the symbols of section 2.2, we can apply equation (I) to each sub-

exposure separately and hence obtain the equations

SX2n-2 + (P2 - x2n-2 ) [ - exp(- tI/T)] P2 (I - y) + yx2n-2  (C-1)

and

X2 n = X +p2, I - yq) + yq

...... (C-2)

We may substitute in C2 from C1 , thus eliminating the odd-numbered terms

2n ' p(I - y q) + yqIp2 ( - y) + YX2n_ 2 ]

= y q+x2n2 + q( - y) + p,(, - yq)

and similarly

x2n2 q+2n4 + p2 y q ( l - y) + p'(l - yq) (C-3)

II II
II II

q+ 2 +yq( - y) + p( -yq)

= yq+ix
0 +p 2yq( I - y)p 2 yq)x 2  + X 0 y) 2P2(

Xo = P 1

Similarly for the odd-numbered terms, we find

X2n-I = y q+x 2n-3 + p2 0 - y) + ply(, - yq)

x yq+Ix2n-5 + ( - y) + p'y(I - yq)X2n- 3 ' 2n5+2M

(C-4)
II I

x3  = y x1  + P2(0 - y) + p'yC1 - yq)

Xl = YP1 + P20 - y)
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Then multiplying successive equations of C 3  by, 1, y+ 2(+1 (q+I)

and adding, we have

X 2n = plyn(q+I) + [p2(I _-~y + p2,(l _ yq)] [I + yq+I + ... + y(-)(+)

= p lyn(q+l) + [p2(i - Y)yq + p2,(I _ yq)] [I -yn(q+I)j/[ - (q+I)]

....(C-5)

Similarly from (C-4)

x2 -IC l n-1)(q+l)+] + IP Iy( n(q+l)

+ p 'v(j - y q) 0 (q+I)(n-I) [I /r (q+]), C6

Special cases

(1) If first noise is effectively silence, ie p 2 =p 1

X 2n l [Yn(q+1)(, _ yq) + pq(1 _ y)] + p2(1 - y q) -I y n(q+l))1/[, _ Y(q+])1

... (C-7)

x 2n -1 jP'[I _J - y -+ r J / /*) 
+ yn(q+I )-q(, _) P,~ ,,q( I -- ,n~q+l~~ Y(q+)] 8

I .. (C-)

(2) If exposure times are equal, ie q = I (the most conmmon experimental

case).

x2n Pl ~2n + 2Y+ y 2n)/I + Y) (C-9)

x 2n- l I 2n-l +[p(1 - 2n) +*,* ~ - y2(n-lI)~ + y) . (C-10)

(3 P2 -p, and q I 2 ) 2 -+ )(-i

x21  [p(Y + y2nl + p 2n y( 0 2nI)( + y)) (C-12)

Since is neesaiy lesV

Ultimate pressure threshold shifts

Sney-exp (- t I/T) inesarllssthan unity, y2 0 as n -

Hence, in the general expressions (equations (C-5) and (C-6)),

-- -- - -



34 Appendix C

X2n [2y - y) + p(l - y q/ - y(q1)J (C-13)

X2n_, 0 P2 l- y) + p'y(- yq) ]/E- y(q+ )] (C-14)

If both tI and qtI are small compared with T

y:: I t I/T y q ^I qt/T

so that

X2 n-I X2n (P2 + qp2)/(] + q) • (C-15)

In the special case where q =

X2n - (P2 + p)/2 . (C-16)X 2n- I x2 P

If both tI and qtI are large compared with T , y and yq are small so that

X2n p pI and X - P2  , (C-17)

as might be expected

Hence the ratio of the pressure thresholds for very long and very short exposure

periods tends to

R2  2p'(q + 1)/(p2 + qp') . (C-18)

If q I
R2 n 2py/(p 2 + p2) , 

(C-19)

which is always less than 2.

Hence the difference between the ultimate shift for continuous exposure and

the ultimate shift for very short exposures alternating with equal periods of quiet

can never exceed 6 dB.

Analysis for section 3.5, Table 7

Initially we have a noise level H dB alternating with quiet in 45-second

bursts producing a shift of DH dB after 2 hours.

If T - 300, t I/T = 1/400 . After 2 hours, 2n 160, y 0.9975,
2n
y 0.6703.
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Hence, using equation (C-11),

(p;/p1 ) -[0 + Y) antilog(D H/20) - y y 21/(, - 2n)

D - 20 log(P;/P,) - 20 log(6.059 antilog(D H/20) -5.059)

For a change of I dB in shift at 2 hours, we need to introduce into quiet periods

a noise which would give a threshold shift of D I dB where, from equation (C-9)
L

20 logly 2n + [y antilog(DL/20) + antilogCDy2o)](I _ y2n)/CI + y D H +1I

y antilog(D /20)(I - y 2n )/( I + y) - antilog[FD H + 1)/20] - y2n

- [antilog(D H/20) - (y + y n0 + y)

- antilog(D H /20) [antilogcl/20) -I

+ YO - y2n 0I 1 + y)

Therefore

DL - 20 log4antilog(D H/20)[antilog(1/20) - Ily(I + y)/CI -
2 n) + 1

. 20 log{0.7374 antilogCD H/2 0) + 1)

If a power law applies (equation (19))

D' - 20 log{I + antilog[n(H - C)/2011
H

D' - 20 log{I + antilog[n(L - C)/201)
L

L - H - (20/n) log {[antilog(DHI/20) - I]/[antilog(DL/20) I
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